dvbbs
加入最愛
聯絡我們
論壇幫助
dvbbs

>> 歡迎各路網友一起討論分享。
搜尋更多此類問題 
佛網Life論壇佛網Life論壇【綜合類】討論區奇文共賞版(Life論壇) → 【轉貼】角動量(Angular Momentum)

您是本帖的第 554 個閱讀者
樹狀 列印
標題:
【轉貼】角動量(Angular Momentum)
善達
帥哥喲,離線,有人找我嗎?
等級:小飛俠
文章:1206
積分:23851
門派:無門無派
註冊:2010年10月28日
樓主
 用支付寶給善達付款或購買其商品,支付寶交易免手續費、安全、快捷!

發貼心情
【轉貼】角動量(Angular Momentum)

Angular Momentum of a Particle



圖片點擊可在新視窗打開檢視

Angular Momentum

The angular momentum of a rigid object is defined as the product of the moment of inertia and the angular velocity. It is analogous to linear momentum and is subject to the fundamental constraints of the conservation of angular momentum principle if there is no external torque on the object. Angular momentum is a vector quantity. It is derivable from the expression for the angular momentum of a particle

圖片點擊可在新視窗打開檢視

Angular and Linear Momentum

Angular momentum and linear momentum are examples of the parallels between linear and rotational motion. They have the same form and are subject to the fundamental constraints of conservation laws, the conservation of momentum and the conservation of angular momentum .

圖片點擊可在新視窗打開檢視

文章出處:https://reurl.cc/RvyglG

The angular momentum of a particle of mass m with respect to a chosen origin is given by

L = mvr sin θ

or more formally by the vector product

L = r x p

The direction is given by the right hand rule which would give L the direction out of the diagram. For an orbit, angular momentum is conserved, and this leads to one of Kepler's laws. For a circular orbit, L becomes

L = mvr












ip地址已設置保密
2023/3/13 上午 07:19:27

 1   1   1/1頁      1    
佛子網路世界的家 佛網 Buddhanet
Powered By Dvbbs Version 7.1.0 Sp1 [0601]
頁面執行時間 00.03125 秒, 4 次資料查詢